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Protein Communication System:
Evolution and Genomic Structure

Nidhal Bouaynaya1 and Dan Schonfeld1

Abstract. We develop a mathematical model of the genetic information storage and transmission system and
investigate its properties. Breaking with tradition, whereas the genetic information storage and transmission
apparatus is conventionally modelled as an engineering communication system with the DNA sequence as
the input and the amino acid chain as the output, in this paper the genetic communication model is viewed as
one between proteins. A connection in a series of protein communication systems is equivalent to a channel
through time: the Channel of Evolution. We investigate the dynamics of the channel of evolution in both cases
of a constant and time-variant point mutation rates. We prove that the distribution of amino acids converges
geometrically to a specific distribution which matches nearly perfectly an estimate of the natural abundance
of amino acids in Nature today. Moreover, based on the highly redundant structure of the encoded genetic
message (i.e., DNA), we demonstrate that the role of introns in eukaryotic genomes is to maintain a fine balance
between two competing yet complementary forces: stability and adaptability. The stability role is evaluated
by showing that introns play the role of a decoy in absorbing mutations. We derive the optimal exon length
distribution, which minimizes the probability of error in eukaryotic genomes. Furthermore, to understand
how Nature can physically achieve such a distribution, we propose a diffusive random walk model for exon
generation throughout evolution. This model results in an alpha stable distribution, which is asymptotically
equivalent to the optimal distribution. Experimental results on various eukaryotic organisms spanning the
phylogenetic tree from unicellular organisms to plants to vertebrates show that both distributions accurately
fit the biological data.

Key Words. Protein communication, Protein evolution, Amino acid distribution, Genomic structure, Iotron
models, Exon models.

1. Introduction. Over the past half a century we have undergone a revolution in our
ability to archive, process and exchange information. Communication of biological sys-
tems took a head start 3.5 billion years ago. However, for all the strengthened efforts that
are directed towards the study of complex engineered information processing systems,
remarkably little is known about the broad role of information in biological systems.

Communication systems are used to study both transmission of information between
remote locations and data storage for future retrieval [1]. Information theoretic principals
have been used to develop effective algorithms to transmit information successfully from
a source to a receiver in engineered systems [2]. Living systems also successfully trans-
mit their genetic information through complex biological processes such as replication,
transcription and translation. Moreover, the genetic information storage and transmis-
sion system is common to the three domains of life (archae, prokaryotes and eukarytes)
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just like engineered communication systems are designed for all possible messages re-
gardless of their semantic meanings. The genetic information storage and transmission
apparatus resembles communication engineering systems in many ways: the genetic in-
formation is encoded in the DNA. By decoding genes into proteins, organisms come into
being. However, unlike communication engineer’s systems, the genetic communication
system is not designed to minimize transmission errors. In the absence of errors, evo-
lution will not be possible. Furthermore, perfect (i.e., errorless) communication of the
genetic information spells stagnation and ultimately extinction. So, intuitively, there has
to be a balance between maintaining the organism identity by reliable transmission of its
genetic information (stability) and allowing errors to occur purposefully to encourage
evolution (adaptability). Then what is the right mathematical model to capture the ge-
netic information storage and transmission system? Moreover, can we mathematically
quantify Nature’s design specifications which balance stability and adaptability? This
paper seeks to address these two questions.

Several researchers have explored the central dogma of genetics from an information
transmission viewpoint [3]–[8]. Gatlin [3], Yockey [4], [7] and Roldan et al. [5] model
the genetic information transfer as a communication system, where the input is the DNA
sequence and the output is the amino acid chain in the protein. That is the channel of
the genetic communication system is the translation process. May [6], [9] and Rosen [8]
consider the channel to be the replication and transcription processes whereas the trans-
lation process models the decoder of the system. However, both models are inconsistent
with engineering communication systems, which model transmission and storage of the
same messages at the source and destination (excluding errors due to channel degra-
dation). As Shannon clearly states in his seminal paper: “The fundamental problem of
communication is that of reproducing at one point either exactly or approximately a
message selected at another point” [2]. Consequently, the reductionist approach to the
central dogma as often misused by “DNA → RNA → protein” cannot be modelled
by a communication engineering system but rather by some non-bijective mathematical
transformation or decoder, which maps the 4-letter alphabet message in the DNA into
the 20-letter alphabet message in the amino acid polypeptide. Moreover, Yockey’s and
Rodan’s DNA–protein system view the DNA as the source and hence completely miss
the true nature of the DNA sequence as the encoded genetic information. In particular,
this view accounts for the existence of non-coding segments in the DNA.

In this paper we model the transmission of genetic information as a communication
system between proteins. The proposed protein communication system is merely an
abstraction, which models a cell as a set of proteins and the process of cell division
as an information communication system between protein sets. This model does not
support either the theories of proteins-first or nucleotides-first at the origin of life. In
fact, the proposed communication model could be used to explain the transmission
of information in both the proteins-first and nucleotides-first theories. The encoding
process, in the proposed protein communication channel, does not happen in biology
since proteins cannot be used to generate DNA. It is only a mathematical model of
the protein information captured by DNA. To clarify this idea, assume that we have a
computer that maintains an MPEG code while decoding to display a video. Copies of
the video to other computers only require sending the MPEG code. Assume further that
the first MPEG code was created by chance. This system never encodes a video into
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MPEG. It only decodes MPEG to display a video. The proper communication model
is, however, “video→MPEG→MPEG→ video” even though the process “video→
MPEG” never takes place. Biological organisms have resolved the real communication
problem, i.e. “protein→ protein”, by ensuring that organisms maintain both proteins and
DNA. Therefore, the “protein→ DNA” encoder is not required biologically. Biological
systems only decode DNA into proteins via the transcription and translation processes.
Furthermore, based on the highly redundant structure of the DNA sequence, i.e., presence
of a large percentage of non-coding segments, we argue that the encoder models a source
and channel encoder [10].

Even though the genetic encoder is unknown, studying the structure of the DNA
sequence might shed light onto the evolutionary constraints which shaped it. In other
words, the encoded information (i.e., DNA) should reflect in its structure the biological
system design specifications: stability and adaptability. An amazing feature of the DNA
is its phenomenal redundancy. The genes of eukaryotic genomes contain protein-coding
sequences, called exons, seperated by non-coding sequences, called introns. Thus, introns
are excluded from the main gene function: making proteins. The great deal of extra
energy required to sustain, process and conserve introns during many millions of years of
evolution may imply an essential function. Otherwise, most likely they would have been
eliminated by natural selection long ago. It appears difficult to prove this via molecular
biology. A better strategy would be to seek an answer outside of the traditional domain.
From a communication engineering point of view, the so-called “junk DNA” may turn out
to be just as important as the much sought-after genes. Forsdyke [11] and later Battail [10],
[12] hypothesized that error-correcting codes are used in the replication process of the
genome. A consequence of this hypothesis is the existence of redundant DNA. The genes
in the DNA are viewed as the encoded messages composed of the information symbols
(i.e., exons) and the redundant symbols (i.e., introns) needed by the error-correction
process. It is well known that DNA replication and protein synthesis involve error repair
mechanisms [13]. However, no linkage has been found between these repair mechanisms
and the intron sequences in the genes. Liebovitch et al. [14] developed a procedure to
check for the existence of a linear block code in genetic sequences. If a linear block
error-correcting code is present in DNA then some bases would be a linear function of
the other bases in each set of bases. However, their experimental results on the lac operon
and the gene for cytochrome c revealed that these two genes do not appear to contain
such a simple error-correcting code. So, either there is no error-correction mechanisms
encoded in the introns or the genetic error-correcting mechanisms are algorithmically
different from what has been tested in the literature so far [15], [12].

We propose that introns control the balance between stability and adaptability in
eukaryotic genomes. On the one hand, introns drive evolution by increasing the rate of
recombination of exons via unequal crossover (adaptability) [16]. On the other hand,
they play the role of a decoy for mutations (stability). For example, recent experiments
removed 1% of the mouse genome and were unable to detect any effect on the pheno-
type [17]. So, the role of introns in increasing the rate of unequal crossovers is tempered
in order to prevent excessive evolutionary adaptability. Rapid changes in the the genome
must not occur too frequently, or else we would experience evolutionary jumps in each
generation. In this paper we prove the stability role of introns based on probability of
error analysis and optimization. The stability role attributed to introns accounts for at
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least two biological facts:

(i) The absence of introns in prokaryotic genomes translates, according to our view, to
a high mutability rate of these primitive organisms. It is widely known today that
many bacteria and viruses rely on mutations for diversification.

(ii) The decoy role for introns predicts that coding sequences should be more conserved
among organisms than non-coding sequences. Studies in comparative genomics
showed that functional DNA sequences tend to undergo mutation at a slower rate than
non-functional sequences. For example, the coding sequence of a human protein-
coding gene is typically about 80% identical to its mouse ortholog, while their
genomes as a whole are much more widely divergent.

This paper is organized as follows: In Section 2 we define the protein communication
channel and introduce its probability transition matrix. A series connection of the protein
communication channel is equivalent to a channel through time: the channel of evolution.
We study the dynamics of the channel of evolution in both cases of constant and time-
varying point mutation rates. In Section 3 we formulate an optimization problem to
determine the optimal exon length distribution, which minimizes the probability of error
in eukaryotic genomes. First, we derive the optimal exon length distribution. Second, we
address the question of a feasible physical realization of such a distribution. We show that
a diffusive random walk model for exon generation throughout evolution leads to an exon
length density, which is asymptotically equivalent to the optimal distribution. In Section 4
we compute the exon length distribution of various eukaryotic organisms spanning the
phylogenetic tree from unicellular organisms to invertebrates to vertebrates. Amazingly,
the alpha-stable and the optimal distributions accurately fit the empirical exon length
distribution of the different eukaryotic organisms. Finally, Section 5 summarizes the
main results of this paper and discusses future work.

2. Protein Communication Channel. We model the transmission of information,
during cell division or asexual reproduction, as a protein communication system with a
single source generating the protein set of the mother cell. The protein communication
system is shown in Figure 1. The physical channel models the transmission and storage
medium and is the source of errors. Chemical mutagens and radiation cause errors in
DNA during storage and replication [18]. The decoder modelled by the transcription and

Fig. 1. Protein communication system.
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Fig. 2. Comparison between the engineering communication system for video transmission and the protein
communication system during cell replication.

translation processes is not free of errors either [19]. However, to simplify the model,
these errors are incorporated as part of the channel. Figure 2 summarizes the analogy
between an engineering communication system for video transmission and the protein
communication system.

A protein communication system, which models the transmission of information
in sexual reproduction, is much more involved mathematically than the single source
communication system in cell replication. From an information theoretic perspective
we have two sources; each source is a parent containing two homologous protein sets.
The output of this communication model consists of two proteins, randomly selected
from each parent, received after transmission over the communication channel. Analysis
of this communication system requires the use of multi-user information theory and
distributed coding. For analytical simplicity, we decompose this complex system into
two parallel communication systems. Each communication system consists of a source
(a single parent) generating two homologous protein sets. A stochastic process selects
one protein from each homologous pair. The selected protein is transmitted through an
identical communication system to the single source protein channel depicted in Figure 1.
The received message is formed by the union of the two proteins received from each
parent.

The protein communication channel is uniquely characterized by its probability tran-
sition matrix. The (i, j) entry of this matrix, Pr(Pj | Pi ), is the probability of receiving
protein Pj = (a j

1 , . . . , a j
N ) given that protein Pi = (ai

1, . . . , ai
N ) was transmitted. We

assume that the protein channel is memoryless. Hence, we have

Pr(Pj | Pi ) =
N∏

k=1

Pr(a j
k | ai

k).(1)

From the above equation, we see that it is sufficient to study the probability transition
matrix, Q(k) = {qi, j (k)}1≤i, j≤20, at time k, of the amino acids.

In this paper we use two different probability transition matrices: the PAM250 proba-
bility transition matrix [20] and a first-order Markov transition probability matrix, P. The
PAM250 matrix reflects the frequencies of mutations for proteins which have diverged
250% (250 mutations per 100 amino acids). These matrices were later refined by Jones
et al. [21] based on a much larger dataset. P is constructed from the genetic code as
follows: Let α(k) be the probability of a base interchange of any one nucleotide at time
k, all interchanges being equally probable. Assuming that the 61 codons are equally
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probable and from Bayes’ rule, we obtain the following formula for the probability of a
transition from amino acid a to amino acid â:

Pr(â | a) = Pr({c1, . . . , cn} | {b1, . . . , bm})(2)

= 1

m

n∑
i=1

n∑
j=1

α(k)h(bj ,ci )(1− 3α(k))3−h(bj ,ci ),

where {c1, . . . , cn} (resp. {b1, . . . , bm}) are the codons of the received (resp. transmitted)
amino acid and h(bj , ci ) is the hamming distance between codon bj and codon ci .
For computational efficiency and since burst mutations are less likely to happen than
one point mutations, we retain only the terms of the first degree in α(k). We form the
Markov probability transition matrix P = {pi, j }1≤i, j≤20 by ordering the amino acids
alphabetically using their one-letter standard abbreviations, e.g., p1,1 = Pr(A | A). For
example, using (2), the probability of receiving amino acid N given that amino acid D
was transmitted is given by

p3,12 = Pr(N | D) = 1
2 {Pr(AAC | G AC)+ Pr(AAC | G AU )+ Pr(AAU | G AC)

+ Pr(AAU | G AU )}
= 1

2 {α(1− α)2 + α2(1− α)+ α2(1− α)+ α(1− α)2} = α(1− α) ≈ α.

The probability transition matrix P is given by

1− 6α 0 α/2 α/2 0 α 0 0 0 0 0 0 α 0 0 α α α 0 0
0 1− 7α 0 0 α α 0 0 0 0 0 0 0 0 α 2α 0 0 α α

α 0 1− 8α 2α 0 α α 0 0 0 0 α 0 0 0 0 0 α 0 α

α 0 2α 1− 7α 0 α 0 0 α 0 0 0 0 α 0 0 0 α 0 0
0 α 0 0 1− 8α 0 0 α 0 3α 0 0 0 0 0 α 0 α 0 α

α α/2 α/2 α/2 0 1− 23
4
α 0 0 0 0 0 0 0 0 3

2
α α/2 0 α α/4 0

0 0 α 0 0 0 1− 8α 0 0 α 0 α α 2α α 0 0 0 0 α

0 0 0 0 2
3
α 0 0 1− 7α α/3 4

3
α α 2

3
α 0 0 α/3 2

3
α α α 0 0

0 0 0 α 0 0 0 α/2 1− 7α 0 α/2 2α 0 α α 0 α 0 0 0

0 0 0 0 α 0 α/3 2
3
α 0 1− 11

2
α α/3 0 2

3
α α/3 2

3
α α/3 0 α α/6 0

0 0 0 0 0 0 0 3α α 2α 1− 9α 0 0 0 α 0 α α 0 0
0 0 α 0 0 0 α α 2α 0 0 1− 8α 0 0 0 α α 0 0 α

α 0 0 0 0 0 α/2 0 0 α 0 0 1− 6α α/2 α α α 0 0 0
0 0 0 α 0 0 2α 0 α α 0 0 α 1− 7α α 0 0 0 0 0

0 α/3 0 0 0 α α/3 α/6 α/3 2
3
α α/6 0 2

3
α α/3 1− 17

3
α α α/3 0 α/3 0

2
3
α 2

3
α 0 0 α/3 α/3 0 α/3 0 α/3 0 α/3 2

3
α 0 α 1− 37

6
α α 0 α/6 α/3

α 0 0 0 0 0 0 3
4
α α/2 0 α/4 α/2 α 0 α/2 3

2
α 1− 6α 0 0 0

α 0 α/2 α/2 α/2 α 0 3
4
α 0 3

2
α α/4 0 0 0 0 0 0 1− 6α 0 0

0 2α 0 0 0 α 0 0 0 α 0 0 0 0 2α α 0 0 1− 7α 0
0 α α 0 α 0 α 0 0 0 0 α 0 0 0 α 0 0 0 1− 6α

For display clarity, we omitted the dependence of the point mutation rate α(k) on the
time k. Observe that P takes into account all possible mutations between amino acids
whether they are accepted or rejected by natural selection whereas the PAM250 transition
matrix is estimated from phylogenetic trees of protein sequences and hence takes into
account the accepted mutations only.

Let p0 be the row probability vector of the initial distribution of the amino acids (at
time 0). It is straightforward to show that the row probability vector of the amino acids
at time k, pk , is given by

pk = p0Q(1)Q(2) · · ·Q(k).(3)
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2.1. Constant Point Mutation Rate. In this subsection we assume that the point mu-
tation rate is constant over time, i.e., α(k) = α, for all times k ≥ 0. Equation (3) then
becomes

pk = p0Qk .(4)

PROPOSITION 1. Consider an initial probability distribution of the amino acids at time
0, p0. Then the probability distribution of the amino acids converges, over time, towards
the stationary distribution given by

{
s1, if Q = P;
s2, if Q = PAM250,

where

s1 = ( 4
61 ,

2
61 ,

2
61 ,

2
61 ,

2
61 ,

4
61 ,

2
61 ,

3
61 ,

2
61 ,

6
61 ,

1
61 ,

2
61 ,

4
61 ,

2
61 ,

6
61 ,

6
61 ,

4
61 ,

4
61 ,

1
61 ,

2
61 )(5)

and

s2 = (0.0873, 0.0338, 0.0479, 0.05, 0.0383, 0.0909, 0.0330, 0.0375,(6)

0.0808, 0.0844, 0.0143, 0.0411, 0.0522, 0.0390, 0.0406, 0.0704,

0.0594, 0.0651, 0.0075, 0.0294).

In order to make biological sense of the limiting distribution vectors s1 and s2, we
compare them with the experimental distribution of amino acids computed in the litera-
ture [22], [21], [23], [24]. We found that there are some fluctuations between the different
experimental distributions. The reason behind this disparity is that different experiments
use different sets of organisms and different protein families. Let us denote by r the
experimental probability vector of the amino acids. Table 1 displays the correlation co-
efficients between the different experimental distributions and the limiting distributions
s1 and s2. Since PAM250 estimates the rate of accepted mutations only, we find that the
limiting distribution s2 has a higher correlation with the experimental distribution r than
the limiting distribution s1. Moreover, the highest correlation was obtained between s2

and the experimental distribution computed in [23]. Figure 3 shows the plot of r in [23]

Table 1. Correlation between the Experimental Frequencies of Amino Acids and the
Limiting Distributions s1 and s2.

Correlation coefficient Correlation coefficient
Experimental distribution r between r and s2 between r and s1

r in [23] 0.96 0.66
r in [22] 0.937 0.632
r in [24] Eukaryotes 0.824 0.74
r in [24] Bacteria 0.836 0.701
r in [24] Archaea 0.76 0.602
r in [24] all taxa 0.834 0.7
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Fig. 3. The experimental distribution of amino acids r in [23] vs. the limiting distribution s2 given by the
PAM250 probability transition matrix.

versus s2. Another interesting observation is that the limiting distributions have higher
correlations with the experimental frequencies of amino acids calculated from eukary-
otes and bacteria than the experimental frequency calculated from archaea (see rows 3–5
of Table 1).

Notice that s1 is proportional to the number of codon assignments for the amino acids.
So, s1 is the distribution of the amino acids if the codons were randomly distributed
in the genome. Equivalently, we can view s1 as the distribution of amino acids if all
randomly distributed point mutations were accepted by Nature (i.e., survived). According
to this view, the discrepancy between s1 and s2 can be related to the relative probability
of survival of the amino acids after mutations. We shall divide the amino acids into
classes C1,C2,C3,C4 and C6 , the subscripts indicating the number of codons for each
class. For example, the class C1 contains two amino acids: Met (M) and Trp (W),
i.e., C1 = {M,W }. The mean experimental in [23] and limiting distributions using
both matrices P and PAM250 are displayed in Table 2. The mean experimental and
limiting distributions, for each class, are very close except for the class of amino acids
corresponding to six codons obtained from the limiting distribution using the probability
transition matrix P. The reason is that arginine, which is coded by six codons, appears with
a much lower frequency than 6

61 . This has been ascribed to the rare appearance of the CG
base doublet so that, in fact, in most observed proteins, arginine is coded only by AGA and
AGG [4].

Table 2. Mean Experimental and Limiting Distributions of the Amino Acid Classes.

Mean experimental Mean limiting Mean limiting
Classes probability in [23] probability (P) probability (PAM)

C1 0.0155 0.0163 0.01075
C2 0.045 0.0327 0.044
C3 0.04843 0.0492 0.0508
C4 0.0656 0.0656 0.0709
C6 0.0663 0.0983 0.0665
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A question naturally arises now: what is the rate of convergence and how is this
rate related to the rate of point mutation α? The answer is provided in the following
proposition:

PROPOSITION 2. The sequence of probability vectors {pk}k≥1 converges at a geometric
rate with parameter |λ2|, where{

|λ2| = 0.53, if Q = PAM250;
|λ2| ≤ 1− 1

2α, if Q = P.
(7)

Thus, the convergence rate for P is no slower than O((1 − 1
2α)

k). Moreover, when
α decreases, the convergence is slower and vice versa. This result is somehow intuitive
and ascertains that no evolution is possible if the point mutation rate α = 0.

2.2. Time-Varying Point Mutation Rate. In this section we consider a rate of point mu-
tation, α(k), which varies in time. Consider the products Tp,k = {t (p,k)i, j } = Qp+1Qp+2 · · ·
Qp+k for every p ≥ 0. For a fixed p, let t be the smallest integer satisfying Tp,t > 0, in
the sense that all its entries are strictly positive.

DEFINITION 1 (Weak and Strong Ergodicity) [25]. The forward products Tp,k are said
to be weakly ergodic if

t p,k
i,s − t p,k

j,s

k→∞−−−−→ 0 for each i, j, s, p.(8)

If weak ergodicity is obtained and the t p,k
i,s themselves tend to a limit for all i, s, p, i.e.,

t (p,k)i, j

k→∞−−−−→ v
(p)
j , then we say strong ergodicity is obtained.

Moreover, if strong ergodicity is obtained, then the limit row vector vp = {v(p)j }
is a probability vector and is independent of p ≥ 0, i.e., vp = v [25]. Hence, strong
ergodicity is equivalent to the existence of the limit of Tp,k as k →∞, for all p ≥ 0.

DEFINITION 2 [25]. A matrix Q = {qi, j } is called a scrambling matrix if given any two
rows β and δ, there is at least one column ρ such that qβ,ρ > 0 and qδ,ρ > 0.

It is easy to show that if every matrix Q(k) is scrambling, then so is Tp,k, p ≥ 0.

THEOREM 1 (Weak Ergodicity Result). Consider a finite number of PAM matrices de-
noted by PAM(1), · · ·, PAM(N), where PAM(i) can be PAM1 or PAM160 or PAM250,
etc., for all i = 1, . . . , N . Consider the sequence: Tp,k = tp+1tp+2 · · · tp+k , where each
ti ∈ {PAM(1), . . . ,PAM(N)}. That is at each time k, the probability transition matrix
is some PAM matrix (the evolutionary time of the PAM matrix and the time k are not
necessarily the same). Then Tp,k is weakly ergodic at a uniform geometric rate for all
p ≥ 0. Consequently, the sequence {pk}k≥1, in (3), tends to a sequence of distributions
independently of p0.
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If we approximate the matrices PAMk by PAMk
1 , the sequence

Tp,k = PAMp+1PAMp+2 · · ·PAMp+k

becomes strongly ergodic. In particular, the sequence {pk}k≥1, in (3), converges to the
limiting distribution s2 given in (6).

THEOREM 2 (Strong Ergodicity Result). Consider a point mutation rate, α(k), which
is bounded uniformly on k, i.e., 0 < a ≤ α(k) ≤ b < 1, for some a > 0 and b < 1. Then
the products Tp,k = Pp+1 · · ·Pp+k are strongly ergodic. Thus, the sequence {pk}k≥1, in
(3), converges towards the stationary distribution s1, in (5), independently of the initial
distribution p0. Moreover, the convergence rate is at least geometric with parameter
(1− γ t )1/t , where γ = min{a/6, 1− 9b}.

The time-varying point mutation rate analysis shows that, even in the more realistic
scenario of a time-varying channel, the distribution of the amino acids can converge to a
fixed limiting distribution (Theorem 2) independently of the initial distribution of amino
acids. In particular, this result implies that, after a sufficiently long time, the channel
characteristics will determine the final distribution which will be independent of the ini-
tial distribution. This conclusion has very different ramifications on bioinformatics than
on communication engineering: The convergence analysis in engineering is interpreted
as a loss of information after an infinite number of transmissions. The reason is that, in
communications, only the initial distribution (i.e., the message) is used to convey infor-
mation and not the channel. In bioinformatics, on the other hand, the final distribution
of amino acids captures the information of the channel (i.e., the mutations) regardless of
the initial distribution. The critical information in modelling the channel of evolution is
therefore the representation of the channel and not the starting point of the evolutionary
process. These implications are verified experimentally [22].

3. Genomic Structure

3.1. Proposed Role of Introns. We propose that introns maintain a genius balance
between stability and adaptability in eukaryotic genomes as follows:

1. Introns reduce the probability of mutation error in the coding regions (i.e., exons) by
serving as decoys which absorb isolated mutations. According to this view, introns
protect coding regions in the DNA sequence from frequent errors in the same way
that hollow uninhabited structures are used by the military to protect important instal-
lations, such as aircraft hangars and missile launching facilities, from a bomb attack
by serving as a “dummy” target that resembles the protected structure. It is important
to emphasize that the role of introns is not to ensure a perfect (errorless) communica-
tion system, but to temper the effervescence of the ever-changing genome under the
chemical, physical and environmental conditions. Perfect information transmission
will spell stagnation and ultimately extinction. This is the major difference between
an engineering communication system and the biological communication system.
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2. Introns drive biological evolution by increasing the rate of recombination of exons
and consequently participate in the creation of new genes [26], [27]. To understand
the role of introns in the assembly of new genes, we found no better explanation than
Gilbert’s statement: “Consider a new gene made by a new combination of regions of
earlier genes by an unequal crossover, a rare event at the DNA level, that matches
small, similar sequences between two DNAs. To make a new protein that contains
the first part of one protein with the second part of another requires such a rare,
and in frame, event. However, if the regions that encode parts of the protein are
separated by 1,000–10,000 base long introns along the DNA, a process of unequal
crossing-over occurring anywhere within that intron between the exons will create
a new combination of exons” [16]. Recently, it has been experimentally proven that
intron lengths are negatively correlated with the rate of recombination in Drosophila
Melanogaster and humans [28]. That is, the advantage of longer introns is expected
to decrease inversely with the rate of recombination. Hence, in the chromosomal
regions where crossing over is infrequent, introns tend to be larger to increase the
rate of recombination between exons. Whether introns were used to assemble the
first genes or not is not relevant to our investigation as long as we have biological
evidence that new genes were and are currently created through the mechanism of
unequal crossover.

The proposed dual role of introns serves to provide a balance between two competing
biological evolutionary functions: stability and adaptability. In the remainder of this
paper, we prove the stability role of introns. However, first we address the question of
the need for a decoy for mutations besides the well-known proof-reading mechanisms.

3.2. Why Does Nature Need a Decoy for Mutations Besides the Proof-Reading Mecha-
nisms? DNA repair mechanisms are constantly operating in cells. In human cells both
normal metabolic activities and environmental factors can result in as many as a million
molecular lesions per cell each day. Consequently, DNA repair mechanisms are essential
for the survival of the organism. However, it is also known that these DNA repair mech-
anisms are not 100% efficient and many errors remain undetected or uncorrected in the
genome. Let us anecdotically compare the efficiency of the Reed–Solomon code and the
genetic error correction mechanisms. The potential efficiency of a code is a function of
the number of redundant bits. A commonly used Reed–Solomon code, in CD players for
instance, uses a codeword length of 255 bytes, of which 223 bytes are data and 32 bytes
are parity. Thus, the redundancy rate of the Reed–Solomon code is 32

255 = 13%. The
human genome contains about 30,000 genes, of which about 130 code for DNA repair
enzymes [18]. Assuming that the genes have roughly the same number of nucleotides,
the redundancy rate of the human error correction mechanism is 130/30,000 = 0.43%!
Hence, despite all the excitement that the discovery of DNA repair mechanisms brought
(especially to creationists), this simple argument indicates that the repair mechanism of
the human genome, for instance, is unlikely to be very efficient. We argue does Nature
uses introns as a decoy for mutations to achieve a lower error rate? However, one can
legitimately ask: Why wouldn’t nature invest in more error correction mechanisms rather
than carry this enormous decoy luggage? Several reasons lie behind this choice: First, if
nature had to design error correction codes to control the exact rate of mutation required
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to maintain life and simultaneously encourage evolution, it would need to know the exact
distribution and form of all possible mutations which occurred in the past and will occur
in the future. Designing complex error correcting codes for a given noise model might
be completely useless in the face of dynamic noise characteristics. Second, a reduction
in the error rate comes at the price of an increase in complexity. Nature might have
preferred to spend more energy in carrying the decoy sequences rather than investing in
complex and costly error repair enzymes.

3.3. Genomic Structure: Deterministic Analysis

PROPOSITION 3. Consider a genome of length T . Assume that the point mutation rate
is randomly distributed in the genome, i.e., the occurrence of mutations is independent
and identically distributed in all regions of the genome. Then the probability of error is
a decreasing function of the length of introns and is independent of the distribution of
introns in the genome.

Hence, we see that a binomial error model does not account for the biological exon (or
intron) length distribution inside the genome. In other words, the biological intron–exon
distribution would be equivalent, from an error robustness criterion, to the distribution
which groups all exons in the beginning of the gene and all introns at its end. Therefore,
we need to consider a different mutation model, which can account for the observed
intron–exon structure in eukaryotic genomes. We propose a Poisson mutation model.
This choice is justified by numerous arguments. First, the Poisson distribution is the
limiting distribution of the binomial when the probability of error is small and the
genome size is large such that the rate of point mutation in a unit interval is held constant
(De Moivre–Laplace theorem [29]). Second, many rare random phenomena in nature
follow a Poisson distribution, e.g., the number of winning tickets in a large lottery, the
number of printing errors in a book, etc. In the remainder of this paper we assume that
the mutations are Poisson distributed in the genome.

Assume now that there are K exons of total length M in a gene of T nucleotides. Let
lk be the length of exon k. In the following proposition we answer the question: “What
are the optimal exon lengths, l∗k , k = 1, . . . , K , which minimize the probability of error
in the gene?”

PROPOSITION 4. Assume that the mutations are Poisson distributed with rate λ. Con-
sider a genome of length T nucleotides including K exons having total length M . Let lk

be the length of the kth exon. Then the probability of error is given by

Pe = 1− e−λK T
K∏

k=1

T−lk∑
n=0

λn(T − lk)
n

n!
.(9)

Since lk ≤ M for all k = 1, . . . , K , we obtain an upper bound on the probability
of error by truncating the summation in (9) to T − M instead of T − lk . Minimizing
the maximum probability of error, Pmax

e , is more tractable analytically than minimizing
the probability of error in (9). Using the Lagrange multiplier technique, with constraint∑K

k=1 lk = M , and taking the derivative of Pmax
e with respect to lk , we obtain the following
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coupled system for the optimal exon lengths:

li0 = M
[
∏

k �=i0�
T−M
n=0
(λn(T − lk)

n/n!)][
∑T−M

n=1 λn(T − li0)
n−1/(n − 1)!]∑K

j=1[
∏

k �= j�
T−M
n=0
(λn(T − lk)n/n!)][

∑T−M
n=1 λn(T − lj )n−1/(n − 1)!]

.(10)

An obvious solution to the system in (10) is obtained when l∗k = M/K for all k =
1, . . . , K . This surprising simple result states that the optimal exon lengths are distributed
according to a delta function centered at the mean value M/K . However, in Nature the
exon lengths are not uniformly distributed in the genome (see Figure 4). The reason this
deterministic analysis fails in capturing the intron–exon distribution is that the genome is
not a deterministic entity but rather a continuously evolving one. Therefore, a stochastic
model for the exon lengths would be more appropriate to describe the genome’s dynamic
nature correctly. The deterministic analysis does, however, capture some characteristics
of the biological data in the following sense:

PROPOSITION 5. Let δM/K be the delta function centered at M/K . For every ρ > 0,
consider the measure dρ between a continuous unimodal probability density function fX

and δM/K given by

dρ(δM/K , fX ) = 1− Pr

(
X ∈

[
M

K
− ρ, M

K
+ ρ

])
.(11)

Let x0 be the mode of fX . Then argminx0
dρ = M/K . That is the mode of fX , which

minimizes the measure dρ , is equal to M/K .

The biological exon distribution is asymmetric given that its support is [0,∞]. The
mode of asymmetric distributions is always less than or equal to their mean. From
Proposition 5, the distribution, which best approximates δM/K in the dρ measure sense,
would have its mode very close to its mean. Amazingly, the exon length distribution of the
human genome has its mode almost equal to its mean obtained at about 170 nucleotides
(see Figure 4)!

Even though the deterministic analysis gave some insights on the optimality of the
biological exon length distribution from an error minimization criterion, a stochastic
model for the exon distribution is needed to capture the dynamics of the evolving genome.

3.4. Genomic Structure: Stochastic Analysis. In this subsection we re-address the prob-
ability of error optimization problem formulated above assuming a stochastic distribution
of the exon lengths. The following proposition establishes the new expression for the
probability of error assuming an infinite genome length, i.e., T = ∞.

PROPOSITION 6. Assume that there are K exons in a genome infinitely long. Let p(l)
be the continuous density of the exon lengths. Assume that the mutations are Poisson
distributed with parameter λ. Then the probability of error is given by

Pe = 1−
(∫ ∞

0
e−λl p(l) dl

)K

.(12)
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Fig. 4. Exon length distribution: the data points represent the biological data; the red curve is the optimal
density, which minimizes the probability of error; and the blue curve is the fitted α-stable distribution. The
graphs of the densities are truncated at exon lengths of 1000 nucleotides.

We want to determine the optimal exon length distribution, p∗(l), which minimizes
the probability of error subject to

∫∞
0 p∗(l) dl = 1. It can be easily shown that the delta

function centered at 0, δ0, satisfies this optimization problem. This solution is somehow
intuitive: no exons implies no error! In order to get a meaningful solution to this optimiza-
tion problem, we need to impose more constraints on the exon length distribution. For
instance, the mean exon length should be larger than a pre-specified number l0 or, more
generally, the αth moment of p(l) should be larger than l0. Consequently, the stochastic
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optimization problem is reformulated as follows:

p∗(l) = argmax
p(l)

∫ ∞
0

e−λl p(l) dl,(13)

subject to (1)
∫ ∞

0
p(l) dl = 1;

(2)
∫ ∞

0
l1+α p(l) dl ≥ l0, for some α ≥ 0.

The optimization problem formulated in (13) is solved using the Euler–Lagrange equa-
tion. We obtain

p∗(l) = p0(1+ µ)
e−λl + γ l1+α + µ,(14)

where µ and γ are the Lagrange multipliers, which are determined numerically. The
parameter α determines the tail decay of the distribution. Taking the derivative of p∗, it
is easy to show that it has a unique maximum. Observe that the (1 + α)th moment of
p(l) is infinite; thus satisfying condition (2) in (13). This infinite moment agrees with
the heavy tail characteristic of the biological exon length distribution (see Figure 4).

Having determined analytically the optimal exon length distribution, it is interesting
to ask ourselves: “How can Nature generate such a distribution? Is there a simple enough
model for exon generation, which leads to the distribution p∗?” The answer is investigated
in the next subsection.

3.5. A Diffusive Random Walk Model. The distributions of initial, internal and terminal
exons in various organisms were shown to be different [30]. However, our purpose is
to model the overall distribution of all exons in eukaryotic genomes. Interestingly, prior
experimental results show that this distribution is identical except for translation and
scale parameters (see Figure 4). Exon shuffling models [31] and insertion and deletion
of nucleotides have been confirmed biologically for many primitive and higher-order
organisms [32]. We propose to model the formation of an exon by concatenation, insertion
and deletion of sub-exons (of different lengths). If exons were formed by insertion and
deletion mechanisms, their lengths would follow some kind of random walk. The length
of the exon at any given time corresponds to the position of the random walk. After N
steps, the length of the exon, X N , is the sum of N random displacements, i.e.,

X N =
N∑

i=1

li .(15)

We are interested in the limiting distribution of X N as N →∞. The experimental analy-
sis of DNA sequences has shown that non-coding DNA exhibits long-range dependence
whereas coding DNA behaves more like a random sequence [33]–[35]. Therefore, we
assume that the sub-exons are formed independently by a stochastic process according
to a distribution f (l). Given the heavy tail characteristic of the empirical exon length
distribution (see Figure 4), we assume that f (l) is power law distribution, i.e.,

f (l) =
{

0, l < l0,

Al−(α+1), l ≥ l0,
(16)
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where 0 < α < 2 and l0 is a cutoff at short lengths to allow the function to be nor-
malizable; the normalization constant is A = αlα0 . By the Generalized Central Limit
Theorem [36], the density of X N tends towards an α-stable distribution Sα(x | β, σ, ξ).
Since Paul Levy found the class ofα-stable distributions, in 1925, as simple exceptions to
the Central Limit Theorem, a vast amount of knowledge has been accumulated about the
properties of these probability distributions, especially infinite moments, elegant scaling
properties and the inherent self-similarity property. They have been found to provide
useful models in the study of physical and economic systems, especially phenomena
with large fluctuations and high variability that are not compatible with the Gaussian
models. Except the Gaussian, the Cauchy and the Levy distributions which are special
cases of the stable class, there is no exact expression of the probability density function
of an α-stable distribution. α-Stable distributions are defined by their characteristic func-
tion. Four parameters are needed: an index of stability α ∈ (0, 2], a skewness parameter
β ∈ [−1, 1], a scale parameter σ > 0 and a location parameter ξ ∈ (−∞,+∞). There
are multiple parametrizations of α-stable distributions. For numerical purpose, we use
a variant of the M-parametrization of Zolotarev [37] with the following characteristic
function [38]:

expıωX =
{

exp−σ
α |ωα |[1+ıβ tan(απ/2)sign(ω)((σ |ω|)1−α−1))+ıξω], if α �= 1;

expσ |ω|[1+ıβ(2/π)sign(ω) ln(σ |ω|)]+ıξω, if α = 1.
(17)

The above parametrization is a scale and location family of distributions: if Y ∼
Sα(β, σ, ξ), then for any a, b, aY + b ∼ Sα(sign(a)β, |a|σ, aξ + b). Other related
issues of stable distributions are discussed in [38]. Some of the prominent properties
of α-stable distributions are: heavy tail, skewness (when β �= 0) and smooth unimodal
density. Their asymptotic behavior is described by

lim
|x |→∞

Sα(x | β, σ, ξ) = C

|x |1+α ,(18)

where C is some constant [36]. Hence, from (14), we see that the optimal distribution p∗

is asymptotically equivalent to an α-stable distribution. Nature would prefer to generate
a simple random walk rather than solve the Euler–Lagrange equation!

4. Experimental Results. All exon lengths for each of the Homo sapiens (Human),
Rattus norvegicus (Rat), Mus musculus (mouse), Apis mellifera (Honey bee), Schizosac-
charomyces pombe (fission yeast), Plasmodium falciparum (malarial parasite) and Ara-
bidopsis thaliana (thale cress) genomes were studied. The data files used were obtained
from the NCBI web site: “ftp://ftp.ncbi.nih.gov/genomes”. Exons tagged as CDS were
included in the analysis. The NCBI handbook makes clear that CDS refers to the portion
of a genomic DNA sequence that is translated. Alternative spliced variants were kept in
the data, so some exons can be recorded several times from a given gene.

An initial data analysis is presented in Table 3. Of the seven different organisms
examined, H sapiens contained the greatest number of exons, 281,975. S pombe has
the least number of exons of the organisms analyzed here. The descriptive statistics for
H sapiens, M musculus, R norvegicus, A mellifera and A thaliana are similar. The two
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Table 3. Descriptive Statistics of Exon Lengths for the Seven Organisms.

Nb exons Mean Stdev Min Max

H sapiens 281,975 167 233 1 17,105
R norvegicus 185,769 177 378 1 9,820
M musculus 226,498 178 326 1 16,625
A mellifera 32,753 234 320 1 7,241
S pombe 9,772 698 1,038 1 11,099
P falciparum 12,660 943 1,957 2 27,815
A thaliana 164,986 228 722 1 6,040

single cellular organisms, S pombe and P falciparum, have considerably higher average
exon lengths as well as greater exon length variation than all the other organisms. For all
the organisms the mean exon length is greater than the median exon length, indicating a
right-skewed distribution. Figure 4 shows the biological data, the optimal density and
the α-stable distribution of the analyzed organisms. For α-stable density fitting, we used
the Mathematica package for stable distributions available from J. P. Nolan’s website:
“academic2.american.edu/∼jpnolan”. The parameter α was estimated by plotting the
data on a log-log scale and estimating the slope: If we order the data X (1) ≥ X (2) ≥
· · · ≥ X (n) (the order statistics of the empirical data) then we can estimate y = P(X > t)
by taking y = i/n and t = X (i). A plot of the points (t, y) = (ln(X (i)), ln(i/n)) should
fit a straight line with slope −α. Figure 5 shows a least mean square fitting of the tail
of the human exons empirical distribution for a 1.5-stable distribution and the Cauchy
distribution, which corresponds to α = 1. The stable distributions S1.5(l | 0.9, 35, 135),
S1.5(l | 0.85, 35, 140), S1.5(l | 0.9, 60, 190), S1.5(l | 0.9, 35, 143), S1.5(l | 0.9, 60, 130),
S1.5(l | 0.9, 46, 135) and S1(l | 0.85, 45, 332) fit the exon length distributions of H sapi-
ens, R Norvegicus, A Mellifera, M musculus, S pombe, P falciparum and A thaliana,
respectively. The same α was used to display the optimal density p∗(l) for these organ-
isms. The mutation rate λ can be interpreted as the average rate of accepted mutations
since the beginning of life on Earth.

Fig. 5. The log–log plot of the human exons empirical data. The slope of the blue line is equal to −1 and
corresponds to fitting a Cauchy distribution to the data. The slope of the orange line is equal to −1.5, and
corresponds to an α-stable fitting of the data.
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The experimental results in Figure 4 show that the empirical data of the exon length
distribution becomes noisier when we go down in the scale of evolution (i.e., for more
primitive organisms) and the fit becomes less accurate. This seems to be in accordance
with our claim about the stability role of introns, since primitive eukaryotic organisms
have few introns and rely on mutations for diversification and adaptation. It would be very
interesting, however, to investigate deeper the relative roles of mutations and crossover
in different organisms to ensure stability and adaptation.

5. Conclusions and Future Work. We proposed a communication channel between
protein sets to model the transmission of genetic information during cell division or
asexual reproduction. The encoder of the protein communication channel does not exist
biologically. Nature cleverly circumvented the encoding process by ensuring that or-
ganisms contain both proteins and the encoded message: the DNA. By decoding DNA
into proteins, organisms come into being. A concatenation in-series of time-dependent
protein communication channels represents a channel through time: the channel of evolu-
tion. Using the PAM250 probability transition matrix and a Markov probability transition
matrix constructed from the genetic code, we investigated the dynamics of the channel of
evolution in both cases of constant and time-varying point mutation rates. Specifically,
we showed that the distribution of the amino acids converges, at a geometric rate, to-
wards a fixed distribution independently of the initial abundance of the amino acids. This
convergence result ascertains that a parent organism will be unrelated to its offspring of
many generations, no matter how small the mutation rate is as long as it is non-zero. We
can obtain similar results with other amino acid substitution matrices, e.g., the BLOSUM
[39] probability transition matrix constructed from the log-odds BLOSUM matrix. The
mathematical tools used will apply, under some mild conditions, on the matrices.

In the second part of the paper we investigated the structure of the genetic codeword,
the DNA. we proved that the introns play the role of a decoy for mutations. It is important
to emphasize that the role of introns is not to ensure a perfect (errorless) communication
system, but to temper the effervescence of the ever-changing genome under the chemi-
cal, physical and environmental conditions. Perfect information transmission will spell
stagnation and ultimately extinction. This is the major difference between an engineering
communication system and the biological communication system. We also maintain that
introns increase the rate of evolutionary adaptation by providing hot spots for genetic
recombination. The proposed dual role of introns serves to provide a balance between
stability and adaptability. It is interesting to note that the role of introns in protection
against mutations is enhanced by increasing the size of the intron regions. On the other
hand, the function of introns in encouraging recombination depends on the presence of
long contiguous nucleotide sequences in introns. In order to moderate the adaptability
rate of the genomic sequence, the length of contiguous nucleotide sequences must be
limited. Indeed, most eukaryotes display multiple intron regions within a single gene.
Introns therefore seem to control the balance between stability and adaptability of the
genomic sequence. One important consequence of this interpretation is that primitive
eukaryotes, which have few or no introns at all, rely on mutations for diversification and
evolution; whereas higher-order organisms, which have many introns, are more stable
with respect to mutations but can undergo big jumps in evolution due to formation of new
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genes via unequal crossover in intron regions. The proper interpretation of our model is
therefore consistent with both prokaryotes and eukaryotes and can be used to help our
understanding of the mystery of missing links in evolution.

Appendix

PROOF OF PROPOSITION 1. The probability transition matrices P and PAM250 are irre-
ducible and aperiodic. Therefore, from the Perron–Frobenius theorem [40], there exists
a unique stationary probability row vector s1 (resp. s2) such that the sequence of powers
{p0Pk}k∈N (resp. {p0 PAM250

k}k∈N) approaches the fixed probability vector s1 (resp. s2)
as k → ∞. Moreover, s1 and s2 are independent of the initial distribution p0. The sta-
tionary probability vector s1 (resp. s2) is the unique eigenvector of the matrix P (resp.
PAM250), corresponding to the eigenvalue 1 and such that s11 = 1 (resp. s21 = 1),
where 1 is the column vector with all its entries equal to 1.

PROOF OF OF PROPOSITION 2. The matrix Q ∈ {P,PAM250} is an irreducible, aperiodic
and stochastic matrix. Therefore, the eigenvalues of Q can be ordered by 1 > |λ2| ≥
· · · ≥ |λt | . As k → ∞, Qk = Q∞ + O(km2−1|λ2|k), elementwise, where m2 is the
algebraic multiplicity of λ2 and Q∞ is the matrix whose rows are equal to the limiting
distribution [25, Theorem 1.2]. Thus the convergence is geometric with rate |λ2|. For
PAM250, we numerically compute |λ2| = 0.53. However, finding the eigenvalues of P,
other than 1, amounts to finding the roots of a polynomial of degree 19 analytically.
Since there is no algebraic way to find the roots of such a polynomial, the following
inequality, due to Deutsch and Zenger, gives an upper bound for λ2 [41]:

|λ2| ≤ 1
2 max

i, j


pi,i + pj, j − pi, j − pj,i +

∑
k

k �=i, j

|pi,k − pj,k |

 .(19)

Applying (19) to the probability transition matrix P, in Figure 2, leads to |λ2| ≤
1− 1

2α.

PROOF OF THEOREM 1. Denote by min+ I the minimum of the strictly positive elements
of the set I . Theorem 1 follows from Theorem 4.10 of [25], which states that if the
sequence Tp,k is scrambling, for all k ≥ 1, and min+i, j q(k)i, j ≥ γ > 0 uniformly for all
k ≥ 1, then weak ergodicity obtains at a uniform geometric rate for all p ≥ 1. Let

γ = min
1≤k≤N

{ +
min

i, j
PAM(k)i, j

}
.

Then we have min
+
i, j PAM(k)i, j ≥ γ > 0 uniformly for all k ≥ 1. Observe that the

main assumption in Theorem 1 is the finite number of PAM matrices. From the proof of
Theorem 4.10 of [25], it follows that the convergence rate is geometric with parameter
(1− γ t )1/t .
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PROOF OF THEOREM 2. From the probability transition matrix P(k), depicted in Fig-
ure 2, we have

+
min

i, j
pi, j (k) = min{1− 9α(k), 1

6α(k)}.(20)

From the boundedness of the mutation rate α(k) (0 < a ≤ α(k) ≤ b < 1), we obtain

+
min

i, j
pi, j (k) ≥ min

{a

6
, 1− 9b

}
= γ,(21)

uniformly on k. Let ek be the unique stationary distribution of P(k). We have ek = s1

in (5), for all k ≥ 1. In particular, the sequence of vectors {ek}k≥1 converges to s1. Since
Tp,k have no zero column, the strong ergodicity property follows from Theorem 4.15
of [25]. The rate of convergence follows from Theorem 4.10 of [25].

PROOF OF PROPOSITION 3. Write T = M+S, where S is the total number of nucleotide
introns in the gene. Then, assuming a total of n ≥ 1 mutations in the gene, the probability
of error Pe is given by

Pe(S) =
n∑

k=1

(
n

k

)
Mk Sn−k

(M + S)n
= 1−

(
S

M + S

)n

.(22)

The derivative of Pe with respect to the variable S is

P
′
e(S) = −

nM Sn−1

(M + S)n+1
< 0, for all n ≥ 1.(23)

Hence Pe is a decreasing function of the intron length for all n ≥ 1. Moreover, (22) is
independent of the intron–exon structure in the gene.

PROOF OF PROPOSITION 4. Let xk denote the start position of the kth exon in the
genome. We have

Pe = 1−
K∏

k=1

Pr(“0 error in exon k”),(24)

where

Pr(“0 error in exon k”) =
T−lk∑
n=0

e−λlk Pr(“n errors outside lk)(25)

=
T−lk∑
n=0

e−λlk

{
n∑

i=0

Pr(“i errors ∈ [1, xk − 1]”)

× Pr(“(n − i) errors ∈ [xk + lk, T ]”)

}

=
T−lk∑
n=0

e−λlk

(
n∑

i=0

e−λ(xk−1) (λ(xk − 1))i

i!
e−λ(T−xk−lk+1)

× (λ(T − xk − lk + 1))i

(n − i)!

)
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=
T−lk∑
n=0

e−λT
n∑

i=0

λn

n!

(
n

i

)
(xk − 1)i (T − xk − lk + 1)n−i

= e−λT
T−lk∑
n=0

λn

n!
(T − lk)

n.

From (25) and (24), we obtain

Pe = 1− e−λK T
K∏

k=1

T−lk∑
n=0

λn(T − lk)
n

n!
.(26)

PROOF OF PROPOSITION 5. Let fX be a unimodal density which reaches its mode at x0.
Then fX (x − x0) reaches its mode at 0. We have

x∗0 = argmax
x0

∫ M/K+ρ

M/K−ρ
fX (x − x0) dx .(27)

By continuity of fX , we have∣∣∣∣(x − x0)−
(

M

K
− x0

)∣∣∣∣ < ρ ⇒
∣∣∣∣ fX (x − x0)− fX

(
M

K
− x0

)∣∣∣∣ < ε,(28)

for some ε > 0. So,∣∣∣∣x − M

K

∣∣∣∣ < ρ ⇒ fX

(
M

K
− x0

)
− ε < fX (x − x0) < fX

(
M

K
− x0

)
+ ε.(29)

So,

argmax
x0

2ρ

(
fX

(
M

K
− x0

)
− ε

)
≤ x∗0 ≤ argmax

x0

2ρ

(
fX

(
M

K
− x0

)
+ ε

)
.

Since fX (x − x0) reaches its mode at 0, we obtain x∗0 = M/K .

PROOF OF PROPOSITION 6.

Pe = 1−
K∏

k=1

Pr(“0 error in exon k”)

= 1−
K∏

k=1

∫ ∞
0

Pr(“0 error in exon k | its length is l”)p(l) dl

= 1−
K∏

k=1

∫ ∞
0

e−λl p(l) dl

= 1−
(∫ ∞

0
e−λl p(l) dl

)K

.
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